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Abstract A coupling of penalization and regularization methods for a variational inequality
with multi-valued pseudo-monotone operators is given. The regularization permits to include
non-coercive operators. The effect of perturbation is also analyzed.
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1 Introduction

Let H be a real Hilbert space and let H∗ be its topological dual which will be identified by H.
The associated inner product and the norm will be denoted by 〈·, ·〉 and ‖ · ‖, respectively.
Let � ⊂ H be a nonempty closed and convex set. Let F : H ⇒ H be a set-valued map and
let ϕ : H → R̄.
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We will focus on the following problem: Find y ∈ � such that there exists w ∈ F(y)
satisfying

〈w, x − y〉 ≥ ϕ(y)− ϕ(x), ∀x ∈ �. (1)

The above problem is a variational inequality (VI) and y ∈ � is its solution. We shall denote
by S(F, ϕ,�), the set of all solutions of (1).

The field of variational inequalities, initiated by Stampacchia [22], is now a well estab-
lished branch of pure and applied mathematics with a wide ranging spectrum of its applica-
tions (see [23]). Notice that when� is a closed convex cone with its apex at the origin and ϕ is
identically zero, the above variational inequality reduces to the well-known complementarity
problem, see Ref. [10]. Regularization methods for the complementarity problems have been
developed by Isac [9].

In this work we approximate (1) by another VI: Find xε,β ∈ H such that there exists
w ∈ F(xε,β) satisfying the condition that for every z ∈ H, the following inequality holds

〈w + εxε,β + β−1�(xε,β), z − xε,β〉 ≥ ϕ(xε,β)− ϕ(z), ε > 0, β > 0, (2)

where� : H → � is a penalty operator fulfilling certain requirements that will be discussed
shortly.

Although we will use an analogue of (2) that also takes into account perturbations/error
in the data for (1), for the time being, it suffices to use (2) to explain the methodology of
this work and also to show the differences between our approach and the other approaches
available in the literature. In (2), we have coupled the traditional penalization and regulari-
zation methods. In fact, the need of the regularization arises as (1), in general, is ill-posed.
Besides dealing with some perturbations in the data of (1), the regularization procedure also
permits us to relax some conditions on the map F.On the other hand, due to the penalization,
(2) does not have the explicit constraint �, that is, (2) is defined on the whole of H. This
formulation has some advantages in numerical procedures, see Ref. [13].

In recent years the regularization methods for variational inequalities have experienced
noteworthy advancements. For example, in Ref. [2] an approximation theory for ill-posed
variational inequalities defined by multi-valued monotone operators has been given under
very mild conditions, including the notion of Mosco-convergence for the approximation of
the constraints sets. Regularization methods for non-monotone operators have been studied
in Ref. [12], see also Ref. [3,4,17].

In the short paper, we study a variational inequality with a multi-valued pseudo-mono-
tone operator. The class of pseudo-monotone operators is considerably larger and includes
monotone operators. The study of regularization methods for perturbed variational inequal-
ities with single-valued pseudo-monotone operators was initiated by Liscovets [15] (see
also Ref. [6]). In an interesting paper Gwinner [8] studied regularization methods for gen-
eral pseudo-monotone bi-functions. Penalty methods for variational inequalities with sin-
gle-valued monotone maps are given in Ref. [7] and with multi-valued monotone maps in
Ref. [1]. To the best of our knowledge this is the first work that unifies the regularization
and/or penalization for variational inequalities with multi-valued pseudo-monotone operators
including Mosco’s approximation of the underlying constraint sets.

This paper is organized into three sections. In the next section we collect some results
to be used in the rest of the paper. In Sect. 3, we deal with the approximation of VI under
consideration. The main result ensures that the perturbed VI recovers the original problem
in a certain sense.
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2 Preliminaries

Let Z be a real reflexive Banach space, let Z∗ be the topological dual of Z , let 〈·, ·〉Z be the
associated pairing and let ‖ · ‖Z be the norm in Z as well as in Z∗.

We recall the notion of multi-valued pseudo-monotone maps which is due to Browder and
Hess [5].

Definition 2.1 A multi-valued map A : Z ⇒ Z∗ is said to be pseudo-monotone, if the
following three conditions are fulfilled:
(C1). For each x ∈ Z , the set A(x) is nonempty, bounded, closed and convex.
(C2). If x∗

n ∈ A(xn) is such that xn converges weakly to x , and the following inequality holds

lim sup
n→∞

〈x∗
n , xn − x〉Z ≤ 0,

then for each y ∈ Z , there exists x∗(y) ∈ A(x) such that

lim inf
n→∞ 〈x∗

n , xn − y〉Z ≥ 〈x∗(y), x − y〉Z .

(C3). The restriction of A to any finite dimensional subspace M of Z is weakly upper-semi-
continuous as a map from M to Z∗.

The following condition (C4)was introduced by Kenmochi [11] who proved that any operator
satisfying (C1), (C2), and (C4), is pseudo-monotone.
(C4). For each x0 ∈ Z and each bounded subset B of Z , there exists a constant N (B, x0)

such that

〈x∗, x − x0〉 ≥ N (B, x0), ∀(x, x∗) ∈ Z × Z∗ with x∗ ∈ A(x) and x ∈ B.
We conclude this section by recalling an existence result for multi-valued variational

inequalities.

Theorem 2.1 [11] Let A : Z ⇒ Z∗ be a multi-valued mapping satisfying (C1), (C2), and
(C4), let C ⊂ Z be nonempty, closed and convex and let ψ: Z → R be proper convex and
lower semi-continuous. Assume that there exists x0 ∈ C such that ψ(x0) < ∞ and

inf
x∗∈A(x)

〈x∗, x − x0〉 + ψ(x)

‖x‖ → ∞ as ‖x‖ → ∞, wi th x ∈ C.

Then, for any given f ∈ Z∗, there exists y ∈ C and y∗ ∈ A(y) such that

〈y∗ − f, x − y〉 ≥ ψ(y)− ψ(x), ∀x ∈ C.

3 Main results

We will connect the exact data (F, ϕ,�) to the perturbed data (Fn, ϕn,�n) through the
following assumptions:

(A1). The sequence of nonempty, closed and convex sets �n converges to �, in Mosco’s
sense. That is the following two conditions hold:

(a) � contains all weak limits of sequences {uk}, uk ∈ �nk , where �nk is a subse-
quence of �n .

(b) For each u ∈ � there exists un ∈ �n such that un → u.
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(A2). For each n ∈ N, the map Fn : H ⇒ H satisfies (C1), (C2) and (C4). Moreover,
there exists κ: R+ → R+ which is bounded on bounded sets and is such that for any
x ∈ H, we have

H(Fn(x), F(x)) ≤ αnκ(‖x‖), (3)

where H stands for the Hausdorff distance between sets and αn > 0.
(A3). For each n ∈ N, the functional ϕn: H → R is proper convex and lower-semicontin-

uous. There exists 	: R+ → R+ which is bounded on bounded sets and is such that
for any x ∈ H, we have

|ϕn(x)− ϕ(x)| ≤ δn	(‖x‖), δn > 0.

(A4) The multi-valued map F satisfies (C1), (C2) and (C4), and the functional ϕ is convex
continuous.

Consider the following Penalized-Regularized Variational Inequality (PRVI): Find xn ∈ H
and wn ∈ Fn(xn) such that for every z ∈ H, the following inequality holds

〈wn + εn xn + β−1
n �n(xn), z − xn〉 ≥ ϕn(xn)− ϕn(z), βn > 0, εn > 0. (4)

The operator �n : H → H is a penalty operator given by �n(x) = x − P�n (x), where
P�n : H → �n is the nearest point projection map onto �n (see Ref. [20]).

For n ∈ N, we will denote the set of all solutions of (4) by Sn(P RV I ). In the following,
the letters k1, k2, etc. denote constants.

The following is the main result.

Theorem 3.1 Assume that (A1), (A2), (A3), and (A4) hold. Assume that there are elements
zn ∈ �n such that ‖zn‖ < k1, ϕn(zn) < ∞ and

inf
wn∈Fn(x)

〈wn, x − zn〉 ≥ k2‖x‖ + ϕn(zn)− ϕn(x), wn ∈ Fn(x), x ∈ H. (5)

Then for every n ∈ N, the solution set Sn(P RV I ) is nonempty. Moreover, if εn → 0, αn → 0,
βn → 0, δn → 0, and the map F is bounded then for every xn ∈ Sn(P RV I ), there exists a
subsequence of (xn)n∈N that converges weakly to some x ∈ S(F, ϕ,�).

Proof In view of Theorem 2.1, it suffices to show that for a fixed n ∈ N, and wn ∈ Fn(x)
we have

inf
wn∈Fn(x)

〈wn + εn x + β−1
n �n(x), x − zn〉 + ϕn(x)− ϕn(zn)

‖x‖ → ∞ as ‖x‖ → ∞.

In fact, in view of (5) and the containment zn ∈ �n, which implies 〈�n x, x − zn〉 ≥ 0, we
have

〈wn + εn x + β−1
n �n(x), x − zn〉 + ϕn(x)− ϕn(zn) ≥ εn‖x‖2 − εn‖x‖‖zn‖ + k2‖x‖)

≥ ‖x‖[εn‖x‖ − εnk1 + k2].
This ensures that Sn(P RV I ) �= ∅. Let us now construct a sequence (xn)n∈N, by choosing
xn ∈ Sn(P RV I ) arbitrarily. We begin by showing that (xn)n∈N is bounded. In view of the
definition of xn, there existswn ∈ Fn(xn) such that for every z ∈ H, the following inequality
holds

〈wn + εn xn + β−1
n �n xn, z − xn〉 ≥ ϕn(xn)− ϕn(z).
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Recall that there exists zn ∈ �n such that ϕn(zn) < ∞ and (5) holds. By setting z = zn in
the above inequality, we obtain

〈wn + εn xn, zn − xn〉 ≥ ϕn(xn)− ϕn(zn)+ β−1
n 〈�n(xn), xn − zn〉.

Notice that for every y ∈ �n, we have 〈�n(xn), xn − y〉 ≥ 0. (This is a direct consequence
of the fact that �n is monotone and vanishes on �n .) Consequently

〈wn + εn xn, zn − xn〉 ≥ ϕn(xn)− ϕn(zn).

We prove the boundedness of (xn)n∈N by contradiction. Assume that ‖xnk ‖ → ∞ as k → ∞.

In view of (5), we have

〈wn, xn − zn〉 + ϕn(xn) ≥ ϕn(zn)+ k2‖xn‖.
By combining the last two inequalities, we obtain

εn〈xn, xn − zn〉 ≤ 0,

which implies that

εn‖xn‖2 ≤ εn‖xn‖‖zn‖.
Dividing both sides by εn‖xn‖ and putting n = nk yields a contradiction, since ‖zn‖ is
bounded. This establishes that the sequence (xn)n∈N is bounded.

Since the space H is reflexive, we can extract a subsequence of (xn)n∈N converging weakly
to some x∗ ∈ H. (We will keep the same notation for the subsequences as well.) We will first
show that x∗ ∈ �. Recall that the definition of xn implies that for some wn ∈ Fn(xn), we
have

β−1
n 〈�n(xn), xn − z〉 ≤ 〈wn + εn xn, z − xn〉 − ϕn(xn)+ ϕn(z). (6)

Notice that,

lim sup
n→∞

[ϕn(z)− ϕn(xn)] ≤ lim sup
n→∞

[ϕ(z)− ϕ(xn)+ δn(	(‖z‖)+ 	(‖xn‖))]
≤ [ϕ(z)− ϕ(x∗)],

where we used the lower-semicontinuity of ϕ(·) and the fact that xn converges weakly to x∗.
Then, the inequality (6), in view of the fact that βn → 0, shows that

lim sup
n→∞

〈�n(xn), xn − z〉 ≤ 0.

Since the map �n is monotone, we have

0 ≤ 〈�n(x)−�n(xn), x − xn〉
We pass to the limit in the above inequality, and use the fact that P�n → P� (see Ref. [21])
provided that �n ⇒ � in Mosco’s sense, to obtain that 〈�(x), x − x∗〉 ≥ 0. By substituting
x = x∗ + λz where z ∈ H is arbitrary, we get 〈�(x∗ + λz), z〉 ≥ 0. By letting λ → 0, we
obtain 〈�(x∗), z〉 ≥ 0 and because this estimate is true for an arbitrary z ∈ H, we deduce
that �(x∗) = 0. Consequently x∗ ∈ �.

Finally we proceed to show that x∗ ∈ S(F, ϕ,�), where x∗ is a weak limit of a subse-
quence of (xn)n∈N. In fact, from the definition of the subsequence (xn)n∈N, for an arbitrary
z ∈ H, and for some w̄n ∈ Fn(xn), we have

〈w̄n + εn xn + β−1
n �n(xn), z − xn〉 ≥ ϕn(xn)− ϕn(z).
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Since �n ⇒ �, there exists a sequence (un)n∈N ⊂ �n which converges strongly to x∗. By
substituting z = un in the above inequality, we obtain

〈w̄n + εn xn, un − xn〉 − ϕn(xn)+ ϕn(un) ≥ β−1
n 〈�n(xn), xn − un〉 ≥ 0.

Due to (A2) there exists a sequence (wn)n∈N with wn ∈ F(xn) satisfying ‖w̄n − wn‖ ≤
αnκ(‖xn‖)+ 1

n . We claim that

lim sup
n→∞

〈wn, xn − x∗〉 ≤ 0.

By the above estimate, we get

〈wn, xn−un〉 ≤ 〈wn−w̄n, xn−un〉 + ϕn(un)−ϕn(xn)+ εn〈xn, un−xn〉
≤

[
αnk(‖xn‖)+ 1

n

]
‖un−xn‖ + ϕn(un)−ϕn(xn)+ εn‖xn‖ ‖un‖−εn‖xn‖2.

Using the facts that εn ↓ 0, αn ↓ 0, and the sequences (xn)n∈N and (un)n∈N are bounded,
the above inequality implies that

lim sup
n→∞

〈wn, xn − un〉 ≤ 0.

The above inequality, in view of the fact that un → x∗, further implies

lim sup
n→∞

〈wn, xn − x∗〉 ≤ lim sup
n→∞

〈wn, un − x∗〉
≤ 0.

Therefore, there exists a subsequence (wn)n∈N such that wn ⇀ w∗. Moreover, we have (see
Ref. [5]) w∗ ∈ F(x∗) and

lim
n→∞〈wn, xn〉 = 〈w∗, x∗〉.

We will show that

〈w∗, z − x∗〉 ≥ ϕ(x∗)− ϕ(z) ∀z ∈ �.
Let z ∈ � be arbitrary. We notice the existence of a sequence (zn)n∈N with zn ∈ �n,

converging strongly to z such that for some w̄n ∈ Fn(xn) the following inequality holds:

〈w̄n + εn xn, zn − xn〉 ≥ ϕn(xn)− ϕn(zn).

In view of this estimate, we have

〈w∗, x∗ − z〉 = lim inf
n→∞ 〈wn, xn − z〉

≤ lim sup
n→∞

〈wn − w̄n, xn − z〉 + lim sup
n→∞

〈w̄n, xn − zn〉 + lim sup
n→∞

〈w̄n, zn − z〉
≤ lim sup

n→∞
[ϕ(zn)− ϕ(xn)]

≤ ϕ(z)− ϕ(x∗).

Since z ∈ � is arbitrary, we deduce that x∗ ∈ S(F, ϕ,�). The proof is complete. �
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